
Page 1 of 17

ANNA UNIVERSITY, CHENNAI

NON- AUTONOMOUS COLLEGES

AFFILIATED TO ANNA UNIVERSITY

M.E. BIOMETRICS AND CYBERSECURITY

REGULATIONS 2025

PROGRAMME OUTCOMES (POs):

PO Programme Outcomes

PO1 An ability to independently carry out research /investigation and development work

to solve practical problems

PO2 An ability to write and present a substantial technical report/document.

PO3 Students should be able to demonstrate a degree of mastery over the area as per

the specialization of the program. The mastery should be at a level higher than the

requirements in the appropriate bachelor program

PROGRAMME SPECIFIC OUTCOMES:

PSO1: Advanced Biometric System Design and Implementation Design, develop, evaluate

and conduct research on biometric systems such as fingerprint, iris, face, and

multimodal authentication systems using advanced image processing, pattern

recognition, and machine learning techniques.

PSO2: Cybersecurity Threat Analysis and Risk Mitigation: Analyze, detect, and prevent

cybersecurity threats and attacks by applying cryptographic algorithms, secure

communication protocols, and digital forensics techniques for robust security solutions.

Page 2 of 17

 ANNA UNIVERSITY, CHENNAI

 POSTGRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: M.E. Biometrics and Cybersecurity Regulations: 2025

Abbreviations:

BS –Basic Science (Mathematics) L – Laboratory Course

ES – Engineering Science (Programme Core (PC),

Programme Elective (PE))

T – Theory

SD – Skill Development LIT – Laboratory Integrated Theory

SL – Self Learning PW – Project Work

OE – Open Elective TCP – Total Contact Period(s)

Semester I

S.
No.

Course
Code

Course Title Type

Periods
per week TCP Credits Category

L T P

1. MA25C07
Advanced Mathematical
Methods (CSIE)

T 3 1 0 4 4

BS

2. CP25C01
Advanced Data Structures
and Algorithms

LIT 3 0 4 7 5 ES (PC)

3. BC25101
Network Design and
Programming

LIT 3 0 0 3 3 ES (PC)

4. CP25C03
Advanced Operating
Systems

T 3 0 0 3 3 ES (PC)

5. CP25C04 Advanced Compiler Design T 3 0 0 3 3 ES (PC)

6. BC25102 Technical Seminar - 0 0 2 2 1 SD

Total Credits 22 19

Page 3 of 17

Semester II

S.

No.

Course

Code
Course Title Type

Periods

per week TCP Credits Category

L T P

1. Biometric Data Processing LIT 3 0 4 7 5 ES (PC)

2. Applied Cryptography LIT 3 0 2 5 4 ES (PC)

3. Quantum Computing T 2 0 0 2 2 ES (PC)

4. Programme Elective I T 3 0 0 3 3 ES (PE)

5. Industry-Oriented Course I - 1 0 0 1 1 SD

6. Industrial Training - - - - - 2 SD

7. Self-Learning Course - - - - - 1 -

Total Credits 18 18

Semester III

S.
No.

Course
Code

Course Title Type
Periods

per week TCP Credits

Category
L T P

1. Programme Elective II T 3 0 0 3 3 ES (PE)

2. Programme Elective III T 3 0 0 3 3 ES (PE)

3. Programme Elective IV T 3 0 0 3 3 ES (PE)

4. Open Elective --- 3 0 0 3 3 ---

5. Industry-Oriented Course II -- 1 0 0 1 1 SD

6. Project Work I - 0 0 12 12 6 SD

Total Credits 25 19

Semester IV

S.
No.

Course
Code

Course Title Type

Periods
per week TCP Credits Category

L T P

1. Project Work II - 0 0 24 24 12 SD

Total Credits 24 12

Page 4 of 17

PROGRAMME ELECTIVE COURSES (PE)

S.
No.

Course
Code

Course Title

Periods
per week

TCP Credits
L T P

1. Principles of Secure Coding 3 0 0 3 3

2. AI for Cybersecurity 3 0 0 3 3

3. Operating System Security 3 0 0 3 3

4. Security Practices 3 0 0 3 3

5. Cybercrime Investigations 3 0 0 3 3

6. Mobile and Digital Forensics 3 0 0 3 3

7. Firewall and VPN Security 3 0 0 3 3

8. Biometric Security 3 0 0 3 3

9.
Cyber Security Managements and
Cyber Laws

3 0 0 3 3

10. Quantum Cryptography 3 0 0 3 3

11. Data Analytics and Risk monitoring 3 0 0 3 3

12. Cryptanalysis 3 0 0 3 3

13. Block chain Technologies 3 0 0 3 3

14. Cyber Forensics and Investigation 3 0 0 3 3

15. Wireless Security 3 0 0 3 3

16. Malware Analysis 3 0 0 3 3

17. Ethical Hacking and Network defence 3 0 0 3 3

18. E-Commerce Security 3 0 0 3 3

19. Vibe Coding 3 0 0 3 3

20. Agentic AI 3 0 0 3 3

Page 5 of 17

Semester I

Page 6 of 17

MA25C07 Advanced Mathematical Methods (CSIE)
L T P C

3 1 0 4

Course Objectives:

• Develop an in-depth understanding of advanced concepts in linear algebra,

multivariate analysis, and number theory for computer science applications.

• Apply mathematical tools such as eigenvalue decomposition, SVD, and

multivariate statistical methods to real-world computing and data-driven

problems.

• Analyze and implement number-theoretic techniques for cryptography, security,

and algorithmic problem-solving in computer science.

Linear Algebra: Vector spaces, norms, Inner Products, Eigenvalues using QR

transformations, QR factorization, generalized eigenvectors, Canonical forms, singular

value decomposition and applications, pseudo inverse, least square approximations.

Multivariate Analysis: Random vectors and matrices, Mean vectors and covariance

matrices, Multivariate normal density and its properties, Principal components,

Population principal components, Principal components from standardized variables.

Elementary Number Theory: The division algorithm, Divisibility and the Euclidean

algorithm, The fundamental theorem of arithmetic, Modular arithmetic and basic

properties of congruences; Principles of mathematical induction and well ordering

principle. Primality Testing algorithms, Chinese Remainder Theorem, Quadratic

Congruence.

Advanced Number Theory: Advanced Number Theory, Primality Testing algorithms,

Chinese Remainder Theorem, Quadratic Congruence, Discrete Logarithm,

Factorization Methods, Side Channel Attacks, Shannon Theory, Perfect Secrecy,

Semantic Security.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped
Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning.
2. Richard A. Johnson & Dean W. Wichern, Applied Multivariate Statistical Analysis,

Pearson.
3. Neal Koblitz, A Course in Number Theory and Cryptography, Springer.
4. Victor Shoup, A Computational Introduction to Number Theory and Algebra,

Cambridge University Press.

Page 7 of 17

E-resources:
1. https://ocw.mit.edu/courses/18-06-linear-algebra

2. https://nptel.ac.in/courses/111105041

3. https://crypto.stanford.edu/pbc/notes/numbertheory

https://ocw.mit.edu/courses/18-06-linear-algebra
https://nptel.ac.in/courses/111105041
https://crypto.stanford.edu/pbc/notes/numbertheory

Page 8 of 17

CP25C01 Advanced Data Structures and Algorithms
L T P C

3 0 4 5

Course Objectives:

1. To explore advanced linear, tree, and graph data structures and their applications.

2. To design efficient algorithms using appropriate algorithmic paradigms.

3. To evaluate computational complexity and identify tractable vs. intractable problems.

Linear Data Structures and Memory Optimization: Advanced arrays: Sparse arrays,

dynamic arrays, cache-aware structures, Linked lists: Skip lists, unrolled linked lists, XOR

linked lists, Stacks and Queues: Priority queues, double-ended queues, circular buffers,

Hashing: Perfect hashing, cuckoo hashing, extendible hashing.

Practical:

• Implement skip lists and measure performance compared with balanced BST.

• Experiment with cache-aware data structures and analyze memory utilization.

Advanced Tree Data Structures: Balanced Trees: AVL, Red-Black Trees, Splay Trees,

Treaps, Multi-way Trees: B-Trees, B+ Trees, R-Trees, Segment Trees, Fenwick Trees,

Suffix Trees and Tries for string processing, Applications in indexing, text retrieval,

computational geometry.

Practical:

• Implement B+ tree for database indexing use-case.

• Design a suffix tree-based algorithm for DNA sequence matching.

Graph Data Structures and Algorithms: Representation: Adjacency list/matrix,

incidence matrix, compressed storage, Traversals: DFS, BFS with applications, Shortest

Path Algorithms: Dijkstra, Bellman-Ford, Floyd-Warshall, Johnson’s algorithm, Minimum

Spanning Trees: Prim’s, Kruskal’s, Borůvka’s algorithm, Network Flow Algorithms: Ford-

Fulkerson, Edmonds-Karp, Push-Relabel.

Practical:

• Implement Johnson’s algorithm for sparse graph shortest paths.

• Demonstration of Maximum flow in traffic or network routing simulation.

Algorithm Design and Paradigms: Divide and Conquer: Karatsuba’s multiplication,

Strassen’s algorithm, Greedy Methods: Huffman coding, interval scheduling, set cover

approximation, Dynamic Programming: Matrix chain multiplication, Floyd-Warshall,

knapsack variants, Backtracking and Branch-and-Bound, Randomized Algorithms and

Probabilistic Analysis.

Practical:

• Implement Strassen’s algorithm and compare with naive matrix multiplication.

• Develop a randomized algorithm for primality testing (Miller–Rabin).

Page 9 of 17

Computational Complexity and Approximation Algorithms: Complexity Classes: P,

NP, NP-Complete, NP-Hard, Reductions: Polynomial-time reductions, Cook-Levin

theorem (overview), Approximation Algorithms: Vertex cover, set cover, TSP, k-center

problem, Heuristic Algorithms: Local search, simulated annealing, genetic algorithms.

Practical:

• Implement approximation algorithm for vertex cover.

• Complexity analysis of a chosen NP-hard problem and implement a heuristic.

Advanced Topics and Emerging Trends: Randomized Algorithms – Monte Carlo

Algorithms, Parallel and Distributed Algorithms – PRAM Model, Divide and Conquer in

Parallel, Load Balancing, Streaming Algorithms – Data Stream Models, Sketching and

Sampling, Frequency Moments, Advanced String Matching – Suffix Trees, Suffix Arrays,

Pattern Matching in Linear Time.

Practical:

• Implement randomized and streaming algorithms on real-world datasets.

• Design of parallel and distributed algorithms.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped
Class Room (10), Review of Gate and IES Questions (25), Project (20)

References:
1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

algorithms. MIT Press.

2. La Rocca, M. (2021). Advanced algorithms and data structures. Manning Publications.

3. Goodrich, M. T., Tamassia, R., & Mount, D. M. (2011). Data structures and algorithms

in C++. John Wiley & Sons, Inc.

4. Weiss, M. A. (2014). Data structures and algorithm analysis in C++. Pearson

Education.

5. Drozdek, A. (2013). Data structures and algorithms in C++. Cengage Publications.

E-resources:

1. https://www.theiotacademy.co/blog/data-structures-and-algorithms-in-c/

2. https://github.com/afrid18/Data_structures_and_algorithms_in_cpp

3.https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-

in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-

uDVKjCK

 Description of CO PO PSO

CO1

Describe data structures and implement

algorithmic solutions for complex computational

problems.

-- --

CO2
Analyze the time complexity and efficiency of

algorithms for various computing problems.
PO1(3) PSO1(3)

https://github.com/afrid18/Data_structures_and_algorithms_in_cpp
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK
https://www.udemy.com/course/introduction-to-algorithms-and-data-structures-in-c/?srsltid=AfmBOorEZlkgV7QzaEh6IqzAaKLjC-IpFU1NGgWFoHMLhOos-uDVKjCK

Page 10 of 17

 Description of CO PO PSO

CO3

Evaluate algorithmic techniques and data

structures to determine their

suitability for different applications.

PO3(2) PSO2(2)

CO4

Design optimized solutions for real-world

problems using appropriate algorithms and data

structures.

PO2(1)

PSO1(3)

Page 11 of 17

 BC25101 Network Design and Programming
L T P C

3 0 0 3

 Course Objective:

• To impart knowledge of network architectures and design principles for building

efficient and scalable computer networks.

• To enable students to develop programming skills for implementing and managing

network functionalities.

• To equip learners with the ability to design and evaluate network systems in real-world

scenarios.

Network Design Fundamentals: Network design lifecycle, requirements analysis-

capacity planning. Hierarchical network architectures, Core-Distribution-Access layers

and modern data center designs. OSI/TCP-IP protocols, routing protocols (OSPF, BGP,

EIGRP), switching technologies. Quality of Service (QoS) implementation strategies,

cost-benefit analysis in network design.

Activities: Demonstrates of inter process communication.

Socket Programming and Network Communication: Berkeley Socket API and

Winsock for TCP/UDP communication. I/O multiplexing (select, poll, epoll),

asynchronous programming, IPv6 considerations. Multi-language network programming

and implementation. Custom protocol design-HTTP client/server implementation, file

transfer protocols.

Activity: Development of TCP and UDP client/server applications

Distributed Systems and Network Programming Frameworks: Distributed system

architectures, RPC, message passing, and consensus algorithms (Raft, Paxos) with

CAP theorem analysis. Event-driven programming frameworks - Node.js/Express-

Python asyncio/FastAPI- RxJava/Spring WebFlux- gRPC implementation.

Microservices architecture with RESTful and GraphQL API design.

Activity: Demonstration of message passing and Creation of Micro services.

Software-Defined Networking and Network Virtualization: SDN fundamentals with

OpenFlow protocolS- flow tables, and controller programming (OpenDaylight, ONOS,

Ryu). SDN application development for topology management. Network Function

Virtualization (NFV) with ETSI standards. Virtual networking technologies - VXLAN

tunneling- container networking (Docker/Kubernetes)-cloud networking solutions.

Activity: Development of SDN applications.

Network Management and Monitoring: Network management protocols, SNMP

programming, NETCONF implementation- YANG data modeling with REST APIs.

Network monitoring, topology visualization- anomaly detection systems. Network

automation using frameworks (Ansible, Puppet, Chef), intent-based networking - CI/CD

pipeline implementation

Page 12 of 17

Activity: Demonstration of Network Monitoring.

Performance Optimization: Traffic shaping, bandwidth management, CDN

implementation, network algorithm optimization.

Activity: Design of CDN Algorithm for Network optimization.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped

Class Room (10), Review of Gate and IES Questions (25), Project (20).

 References:
1. Kurose, J. F., & Ross, K. W. (2021). Computer networks: A top-down approach.

Pearson Education.

2. Newmarch, J. (2021). Network programming with Go. Apress.

3. Donahoo, M. J., & Calvert, K. L. (2009). TCP/IP sockets in C: Practical guide for

programmers. Morgan Kaufmann.

 E- Resources:

1. Prof. Soumya Kanti Ghosh Prof. Sandip Chakraborty, “Computer Networks
And Internet Protocol”, IIT Kharagpur, NPTEL

 “https://nptel.ac.in/courses/106105183”

2. Prof. Neminath Hubballi Prof. Sameer Kulkarni, “Advanced Computer
Networks, IIT Indore, IIT Gandhi nagar, NPTEL

 “https://nptel.ac.in/courses/106106243”

 Description of CO PO PSO

CO1
Explain complex network architectures

integrating QoS strategies.
-- --

CO2
Apply SDN and NFV concepts to create

programmable, virtualized network solutions.
PO1(3) PSO1(3)

CO3
Develop robust client-server applications using

socket programming.
PO3(2) PSO2(2)

CO4
Evaluate network performance and optimize
designs using monitoring tools.

PO2(1)

PSO1(3)

Page 13 of 17

CP25C03 Advanced Operating Systems
L T P C

3 0 0 3

Course Objectives:

• To analyze the architectures and design issues of advanced operating systems.

• To develop the model for process synchronization and recovery in complex

environments.

• To evaluate algorithms for distributed coordination, resource management, fault

tolerance, and security.

Advanced Process and Thread Management: Multithreading models, thread pools,

context switching, Synchronization issues and solutions: semaphores, monitors, lock-

free data structures, CPU scheduling in multi-core systems

Activity: CPU scheduler simulation for multicore systems.

Memory and Resource Management in Modern OS: Virtual memory, demand paging,

page replacement policies-Huge pages, NUMA-aware memory management-Resource

allocation in cloud-native environments

Activity: Simulate demand paging and page replacement algorithms.

Virtualization and Containerization: Hypervisors (Type I & II), KVM, QEMU, Xen-

Containers: Docker, LXC, systemd-nspawn-OS-level virtualization and namespaces

Activity: Deploy and configure Docker containers with various images.

Distributed Operating Systems and File Systems: Distributed scheduling,

communication, and synchronization-Distributed file systems: NFS, GFS, HDFS-

Transparency issues and fault tolerance

Activity: Simulate distributed process synchronization.

Security and Trust in Operating Systems: Access control models: DAC, MAC, RBAC-

OS hardening techniques, sandboxing, SELinux, AppArmor-Secure boot, rootkit

detection, trusted execution environments

Activity: Implement Role-Based Access Control (RBAC) using Linux user and group

permissions.

Real-Time and Embedded Operating Systems: Real-time scheduling algorithms

(EDF, RM)-POSIX RT extensions, RTOS architecture-TinyOS, FreeRTOS case studies

Activity: Analyze FreeRTOS task scheduling behavior.

Edge and Cloud OS: Future Paradigms: Serverless OS, unikernels, lightweight OS

for edge computing-Mobile OS internals (Android, iOS)-OS for quantum and

neuromorphic computing (intro)

Activity: Analyze Android’s system architecture using emulator tools.

Page 14 of 17

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped
Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Tanenbaum, A. S., & Bos, H. (2023). Modern operating systems. Pearson.

2. Buyya, R., et al. (2022). Content delivery networks and emerging operating systems.

Springer.

3. Silberschatz, A., Galvin, P. B., & Gagne, G. (2022). Operating system concepts.

Wiley.

4. Anderson, T., & Dahlin, M. (2021). Operating systems: Principles and practice.

Recursive Books.

5. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2020). Operating systems: Three

easy pieces.

E-Resources:

1. Prof. Smruti Ranjan Sarangi, “Advanced Distributed Systems”, IIT Delhi, NPTEL,

https://onlinecourses.nptel.ac.in/noc22_cs80/preview

2. Prof. Rajiv Misra, “Cloud Computing and Distributed Systems”, IIT Patna, NPTEL,

https://nptel.ac.in/courses/106104182

 Description of CO PO PSO

CO1
Describe operating system concepts for memory and
resource management.

-- --

CO2
Analyse virtualization and distributed OS mechanisms for

scalability and performance.
PO1(3) PSO1(3)

CO3
Evaluate OS security and resource handling strategies in

diverse environments.
PO3(2) PSO2(2)

CO4
Design innovative OS solutions using modern tools and

techniques.
PO2(1)

PSO1(3)

https://www.youtube.com/playlist?list=PLLDC70psjvq5hIT0kfr1sirNuees0NIbG
https://onlinecourses.nptel.ac.in/noc22_cs80/preview
https://nptel.ac.in/courses/106104182

Page 15 of 17

CP25C04 Advanced Compiler Design
L T P C

3 0 0 3

Course Objective:

• To analyze the theory and principles of modern compiler design and advanced

optimization techniques.

• To design and implement efficient front-end and back-end compiler components for

programming languages.

• To evaluate code optimization strategies and runtime environment management in

contemporary architectures.

Intermediate Representations and Control Flow Analysis: Static single assignment

(SSA) form- Context-Free Grammer (CFG) construction-dominance relations-

Intermediate Representation (IR) design for functional and imperative languages-Static

single assignment and def-use chains

Activities:

1. Convert source code to SSA form using LLVM IR.
2. Visualize control flow graphs from SSA using LLVM tools.

Program Analysis and Transformations: Data flow analysis- live variable analysis-

reaching definitions-Alias analysis and dependence analysis-Loop optimizations and

transformations

Activities:

1. Perform loop unrolling and strength reduction.

2. Conduct live variable analysis and visualize data flow graphs.

Advanced Optimizations and Polyhedral Compilation: Polyhedral model for loop

nests-Tiling, skewing, fusion, and vectorization-Profile-guided and feedback-directed

optimizations

Activities:

1. Implement loop tiling and loop skewing on a matrix multiplication program.

2. Analyze the effect on loop-intensive code with LLVM optimization flags.

Just-in-Time (JIT) and Runtime Compilation: JIT compilation models: tracing,

method-based-GraalVM architecture, Java HotSpot internals-LLVM JIT and dynamic

language support

Activities:

1. Develop a basic JIT-enabled interpreter with LLVM or GraalVM.
2. Implement dynamic dispatch using LLVM JIT API.

Page 16 of 17

Machine Learning in Compiler Design: ML for phase ordering, auto-tuning, and IR

prediction-Reinforcement learning for optimization passes-Dataset creation and

benchmarking for compiler ML

Activities:

1. Train an ML model to predict optimization passes.

2. Use reinforcement learning for pass selection in toy compiler.

Domain-Specific Languages (DSLs) and Compiler Extensions: Designing DSLs for

AI/ML, DSP, graphics-Code generation for custom accelerators-Integration with

TensorFlow XLA and Halide

Activities:

1. Design and test a simple DSL grammar using ANTLR.

2. Integrate a DSL with TensorFlow XLA or Halide.

Security, Verification, and Future Trends: Secure compilation and type-safe

intermediate representations-Compiler fuzzing and formal verification (e.g., CompCert)-

Quantum compilers, multi-target compilers, and neuromorphic systems

Activities:

1. Use CompCert to verify compilation of simple programs.

2. Apply compiler fuzzing using tools like libFuzzer.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Assignments (15), Quiz (10), Virtual Demo (20), Flipped
Class Room (10), Review of Gate and IES Questions (25), Project (20).

References:

1. Cooper, K. D., & Torczon, L. (2023). Engineering a compiler. Morgan Kaufmann.

2. Grune, D., Bal, H. E., Jacobs, C. J. H., & Langendoen, K. G. (2012). Modern compiler

design (2nd ed.). Springer.

3. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

techniques, and tools (2nd ed.). Pearson.

4. Völter, M. (2013). DSL engineering: Designing, implementing and using domain-

specific languages. dslbook.org.

5. Sarda, S., & Pandey, M. (2015). LLVM essentials. Packt Publishing.

E-Resources:

1. Prof. AmeyKarkare, IIT Kanpur, “Advanced Compiler Optimizations”

Link: https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/

2. Prof. Santanu Chattopadhyay, “Compiler Design”, IIT Kharagpur

Link:” https://onlinecourses.nptel.ac.in/noc21_cs07/preview”

https://www.cse.iitk.ac.in/users/karkare/Courses/cs738/
https://onlinecourses.nptel.ac.in/noc21_cs07/preview

Page 17 of 17

 Description of CO PO PSO

CO1
Explain intermediate control flow techniques in
compiler design.

-- --

CO2
Apply program analysis techniques and advanced
optimizations for design of compilers.

PO1(3) PSO1(3)

CO3
Develop compiler features and machine learning
techniques for optimization.

PO3(2) PSO2(2)

CO4
Evaluate secure compilation strategies for quantum
and multi-target compilation.

PO2(1)

PSO1(3)

